

Meeting Agenda

- 1. Welcome and Introduction
- 2. NWL Inventory Overview
 - Forests and Other Natural Lands
 - Croplands
 - Urban Lands
 - Soil Carbon
 - Wetlands
- 3. Upcoming Work
- 4. Discussion

IPCC Conceptual Framework:

Stasis vs Transition

IPCC Methodology Tiers

Stock Difference Method

100 Mg CarbonCarbon Stocks, *Time 1*

1000 Mg Carbon Carbon Stocks, *Time 2*

C stocks_{Time2} – C stocks_{Time1}

= 1000 Mg C - 100 Mg C = 900 Mg C

Forests & Other Natural Lands Inventory

Forest and Other Lands Inventory Data & Methods Overview

Forest Land Carbon Pools

2,448 Total Tg C

Tree & Shrub Dominated Forest LandLive & Total Biomass Carbon Stocks

Forests & Other Natural Lands 2010 – 2012 Changes in Above-Ground-Live Carbon Stocks (MMT C)

		2012					
	Land Cover	Croplands	Forests	Grasslands	Other Lands	Settlements	Wetlands
	Croplands	TBD	TBD	TBD	TBD	TBD	TBD
	Forests	-0.49	11.53	-3.67	0.23	-1.1	
2010	Grasslands	-0.06	6.3 x 10 ⁻⁶	-0.3	6.0 x 10 ⁻⁴	-0.02	
	Other Lands	-0.00			0	-0.00	
	Settlements					TBD	
	Wetlands						10 ()

Forests & Other Natural Lands 2012 – 2014 Changes in Above-Ground-Live Carbon Stocks (MMT C)

		2014						
2012	Land Cover	Croplands	Forests	Grasslands	Other Lands	Settlements	Wetlands	
	Croplands	TBD	TBD	TBD	TBD	TBD	TBD	
	Forests		4.96	-6.05				
	Grasslands		3.18					
	Other Lands				4.14 x 10 ⁻⁷			
	Settlements					TBD		
	Wetlands						11	

Forest and Other Natural Lands 2012 - 2014 **Changes in Total* Carbon Stocks (MMT C)**

*Live and dead pools, not including soils

Live and dead pools, not including sons								
		2014						
	Land Cover	Croplands	Forests	Grasslands	Other Lands	Settlements	Wetlands	
	Croplands							
	Forests		3.63	-15.87				
2012	Grasslands		27.85	3.96 x 10 ⁻³				
	Other Lands				4.14 x 10 ⁻⁷			
	Settlements							
	Wetlands						12	

Disturbance by Ownership 2012 - 2014

QUESTIONS?

Woody Crop & Urban Forest Inventories

Croplands NDVI Time Series (1972 - 2018)

Google Street View

Map orchard types and ages

Relate height to age/orchard type

Relate height to diameter

Apply allometric equations

▲ UC Davis Sampling

Relate tree density to age

Quantify Carbon Content

Above and belowground carbon storage for grapes, almond, walnut, pistachio and orange orchards in California from 1997-2012

Map orchard types
and ages

Carbon Stocks Time-Series by Orchard Type

Urban Forest Carbon Quantification Methods

California Urban Forest Canopy Cover

*Base year is highlighted in yellow

Bjorkman et al. 2015. (2015) Biomass, carbon sequestration and avoided emission: assessing the role of urban trees in California. Information Center for the Environment, UCDavis.

Urban Forest Carbon Quantification Methods

Urban Forest Carbon Quantification Methods

Mean observed annual CO₂ Sequestration

With urban Sprawl = 1.9 Tg C yr⁻¹ Without urban sprawl = 0.9 Tg C yr⁻¹

QUESTIONS?

Soil Carbon & Wetlands Inventories

Analysis Overview

IPCC Tier 2 Methodology:

- Used to calculate soil organic carbon stock change on Forest Lands, Grasslands, Settlements, Other Lands, and Croplands in the Sacramento-San Joaquin Delta
- Used SoilGrids for 2001 SOC stocks and LANDFIRE to determine land cover types and change
- Created land cover change factors to track stock change due to conversion

IPCC Tier 3 Methodology:

- Used to calculate SOC stock and stock change on agricultural soils, exempting the Sacramento-San Joaquin Delta
- Utilized the Denitrification Decomposition (DNDC) model and California specific activities data
- Is disaggregated by county and crop type

28

California Soil Carbon Stock Change 2001 - 2010 (MMTC)

				- (,			
		2010						
	Land Cover	Croplands	Forests	Grasslands	Other Lands	Settlements	Wetlands	
	Croplands	-14.18	2.09 X 10 ⁻³	8.42 x 10 ⁻⁵	-0.12	-1.13		
	Forests	-7.10	-0.02	-1.56	-6.98	-0.09	-2.45 x 10 ⁻⁴	
2001	Grasslands	-4.05	3.89 X 10 ⁻³	-4.74	-0.28	-0.08		
	Other Lands	-0.49	12.59	0.05	-1.63 X 10 ⁻³	-1.15 x 10 ⁻³		
	Settlements					-1.47		
	Wetlands			TE	3D		29	

Key Category Soil Carbon Stock Change 2001 - 2010

Wetlands by IPCC Category

¹ Does not exist in California or acreage is negligible

² Organic soils in the Delta have been drained for over 100 years, hence they are categorized as cropland on drained organic soil

Creating the Wetland Soils Inventory

■ IPCC Tier 1 methodology

- Emissions = Area x Emission Factor
- Emission factors provided by the 2013 Supplement to the 2006 Guidelines for National GHG Inventories: Wetlands
- Mapped the location and extent of wetlands using the California Aquatic Resources Inventory (CARI) product from the San Francisco Estuary Institute

2016 Wetland Emissions

Category	Emissions (MMT CO ₂ e)	Land Area (hectares)
Rewetted Organic Soils	-0.48	49,900
Coastal Wetlands	0.19	57,900
Inland Wetland Mineral Soils	-0.63	80,300
Total	-0.93	188,100

Quantified Statewide Carbon Stocks

*Soil carbon estimates are quantified to a depth of 30 cm pursuant to United Nations IPCC protocol

Statewide Carbon Stock Change by Land Cover Type

QUESTIONS?

Additional Analysis

Senate Bill (SB) 859

- Complete a NWL Inventory
- Vision for framework that:
 - Supports GHG reduction goals and GGRF investments for forests;
 - Includes a framework for BAU projection; and
 - Considers state, regional, and project scales of accounting.
- Publish by December 30, 2018

Annualizing Inventory

- Statistical model of growth with climate
- Annual observed disturbance satellite data
- Land use/land cover change included

NWL Visualization Tool

Monitoring at Multiple Scales

- Identify reference NWL very similar to project NWL
- Monitor progression of project and reference NWL through time
- Use large amounts of spatial & remotely sensed data
- Machine Learning
- Indicators must be remotely sensed
 - Growth
 - Disturbance

Example done in Sweden for conserved forests

Long-Term Integrated Assessment

- Create a integrated landscape modeling system
 - Create a spatially explicit model that allows user-defined policy and environmental scenarios
 - Dynamically account for environmental and human system feedbacks
 - Dynamically model changes in species composition and succession
- Build internal capacity
- Ensure public transparency

Next Steps

- 1. Release the NWL inventory by end of year to meet SB 859
- 2. Continue to refine the inventory methods
 - Move the soil carbon inventory to Tier 3 methods
 - Develop the wetlands inventory for 2001 2010
 - Annualize the inventory
- Disseminate data in a visualization tool
- 4. Assess the next generation modeling

Send comments to anny.huang@arb.ca.gov by November 14, 2018

Contacts:

Name	Topics	Email
Dave Edwards Chief – GHG & Toxics Emissions Inventory Branch		David.Edwards@arb.ca.gov
Anny Huang Manager - Emission Inventory Analysis Section	SB 859 Framework, NWL inventory & GHG inventory	Anny.Huang@arb.ca.gov
Klaus Scott Technical Lead Staff	Forests and other natural lands, wildfire	Klaus.Scott@arb.ca.gov
Megan Miranda	Soil carbon, emissions from fertilizer use, wetland, tracking land use change	Megan.Miranda@arb.ca.gov
Adam Moreno	Scenario projection modeling, cropland biomass, urban forest	Adam.Moreno@arb.ca.gov

QUESTIONS?

